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A computer code has been constructed that solves the full magnetohydronamic (MHD) 
equations in toroidal geometry. The code is applicable to toroidal devices, including 
tokamaks, stellarators, and reversed field pinches. A fully implicit numerical technique is used 
that allows linear eigenvalues and eigenfunctions to be found in a very few computational 
steps. Althought the present work dscribes the solution of the linearized equations, 
generalization of the numerical method to the solution of the nonlinear problem is 
straightforward. Use of the code is illustrated by calculating the n = 1 instability for a 
tokamak configuration. The results show the structural changes in the eigenfunctions as the 
plasma pressure is increased. (’ 1986 Acadrmr Press. Inc. 

I. INTR~XJCTION 

A formalism to solve the magnetohydrodynamic (MHD) equations in toroidal 
geometry has been developed which follows very closely that devised in Ref [ 11. 
This approach uses the full MHD equations with no ordering assumptions. The 
fluid is assumed to be incompressible. Both ideal and resistive modes can be 
studied. A computer code FAR has been constructed to solve these equations using 
a fully implicit scheme. Extensive research using the full MHD equations in non- 
toroidal geometries has been carried out by Schnack and Killeen [2], Hender [3], 
Aydemir and Barnes [4], and Izzo et al, [S]. 

At present the FAR code can be used to study the linear stability of plasmas in 
toroidal devices, such as tokamaks, reversed field pinches, and stellarators (using 
the stellarator expansion approach). The extension of the numerical technique to 
the solution of the nonlinear equations is straightforward and is being pursued. In 
the present paper we limit the discussion to the tokamak configuration. The fully 
implicit nature of the numerics allows extremely fast linear calculations, as will be 
discussed. The speed is accomplished by exploiting the resonant behavior of the 
implicit scheme. When a reasonable guess for the eigenvalue is known, convergence 
can be achieved in a few steps. It is also possible to study unstable modes other 
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than the most unstable one by properly choosing the step-size convergence 
parameter. Numerical results for resistive n = 1 tokamak instabilities have been 
compared with the results of the computer code RST [6], which solves a reduced 
set of MHD equations based on large aspect ratio tokamak ordering [7]. In the 
cylindrical limit, n = 1 results have been compared with those of CYL [8], an initial 
value code that solves the full MHD equations in cylindrical geometry. Detailed 
comparisons of ideal tokamak instabilities have also been made with the results of 
ERATO [9], which solves the compressible MHD equations in the ideal limit with 
a 6 W approach. 

In Section 2, the equations and their derivations will be discussed. The boundary 
conditions are discussed in Section 3, and numerical techniques presented in Sec- 
tion 4. Results to illustrate the numerical behavior and use of the code are given in 
Section 5. Discussion and conclusions are presented in Section 6. 

II. EQUATIONS 

Let us consider the resistive MHD equations, 

dB 
-= -VxE, 
at 

E+vxB=vJ, 

,.,.(;+v.FY)= -Vp+JxB, 

J-VxB, 

V*B=O, 

ap ;i;+v~vp+fpV~v=O, 

and 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

In this work we shall make the simplifying assumptions that the fluid velocity 
obey the condition 

(8) 

and that the mass density pm be constant in time. The velocity constraint reduces to 
incompressibility in cylindrical geometry. In toroidal geometry, the correction l/R2 
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leads to a convenient representation in terms of potential functions while suppress- 
ing compressional Alfven waves. Strictly speaking, this assumption restricts the 
domain of applicability to phenomena in which compressibility is not an important 
effect. For kink modes the effects omitted by an incompressibility assumption are 
small as shown in Section V where a comparison is made with the MHD stability 
code ERATO [9] which includes such effects. Work is underway, however, to add 
the effects of compressibility to the present code since they may be important in the 
study of ballooning modes [lo]. The constraint on the mass density implies 

v * (p,v) = 0. (9) 

It is consistent with the above constraints to assume for the equilibrium mass den- 
sity the following form: 

2 

P,=Po, 2 3 
( ) 

(10) 

where R is the major radius and R, is its value at the magnetic axis. 
The MHD equations are solved in toroidal geometry. An equilibrium flux coor- 

dinate system (p, 8, [) [6] is used, where p is a flux surface label, 8 is a generalized 
poloidal angle variable, and [ is the toroidal angle. The angle 8 is determined from 
the straight magnetic field line condition. Equations (l)( 10) can be written in 
terms of potential functions that guarantee an exact solution of Eq. (5) and the 
incompressibility condition (8). For the magnetic field the usual vector potential 

B=VxA (11) 

is used together with the gauge condition A, = 0. This choice of gauge allows the 
remaining two covariant components of the vector potential to be identified with 
the poloidal and toroidal magnetic fluxes. The velocity is treated in similar fashion. 
Defining a velocity potential Q to obey the equation 

the velocity “gauge” condition Sz, = 0 is chosen. Of the remaining components, .Q; 
is the velocity stream function and Q, is closely related to the toroidal velocity. 
Using these potentials, Eqs. (5) and (8) are obeyed identically. 

We now express Eqs. ( 1 )-( 10) in terms of the potentials defined in Eqs. ( 11) and 
(12). Equations (7) and (9) may be disregarded because of the incompressibility 
assumption [Eq. (8)] and the assumed form of the mass density [Eq. (lo)]. 
Faraday’s law (1) and Ohm’s law (2) can be combined to derive the time evolution 
equation for A, 
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where LX is the negative of the electrostatic potential. To express the moment 
equation in terms of the velocity potential and the vorticity 

U=R2Vxv, (14) 

we apply the operator V x R* to Eq. (3). Expressing the above in terms of the 
generalized coordinates (p, 8, [) leads to six equations for six unknowns. These 
equations are 

ax i a0r at= ----&‘+~pB+j~, 
P ae 

da 
ap- - - v”Bc + v;B” + qj,,, 

a I a 
+;;i(iUB~-,i(Bf’)+;;;;(i”BP-ji’BH) , 

I 

-----___ 
ap p a0 p a0 ap 

, 

(16) 

(19) 

and 

ap --UC) -+rRE 
i 
ap 

at’ ap R* ap 

(20) 

The six unknowns are the poloidal flux function $ = -AC, the toroidal flux 
function x= -A,, the poloidal velocity stream function 4 = -R,, the toroidal 



FULL TOROIDAL MHD CALCULATIONS 111 

velocity stream function A = - .QO, the electrostatic potential CC, and the pressure p. 
In terms of these quantities, the magnetic field and velocity, respectively, are given 
by 

B=V~XV(~X)+V[XVIJ (21) 

and 

v = R*[Ve x V(pA) + vi x V$b]. (22) 

Specifically, the quantities that appear in the equations to be time advanced 
[Eqs. (15))(20)] are related to the six unknowns by 

1 a(pfv ui=-- 
P ap ’ 

Bc = ’ a(px) 
P ap ’ 

(23) 

(24) 

(25) 

6’6) 

(27) 

(28) 

(29) 

(30) 

(31) 

581.‘63.‘1-8 
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(32) 

and 

(33) 

In Eqs. (15))(34), all lengths are normalized to a generalized minor radius a 
[defined by u2 = Roj Rmm2dV/(2n2), with the integration over the plasma volume]; 
the resistivity to q0 (its value at the magnetic axis); the time to the resistive diffusion 
time r, = u~~~/~,, where cl0 is the vacuum magnetic permeability; the magnetic field 
to B, (the toroidal vacuum field at the plasma major radius R,); the velocity to 
u/t,, and the pressure to p0 (its equilibrium value at the magnetic axis). R is the 
major radius coordinate normalized to R,, and S= 7,/r,, is the ratio of the 
resistive time to the poloidal Alfven time [r,, = Ro(pop,,z)‘~2/Bjo]. 

To solve this system of equations, the unknown quantities (X) are separated into 
equilibrium (X,,) and perturbation (2) parts: 

m 0, i) =x&h 0) + %P, 60 (35) 

The purely equilibrium terms are discarded in FAR, leaving only terms that are 
linear or quadratic in the perturbed quantities. Only the linear version is discussed 
here. 

For axisymmetric equilibria, without flows, Eqs. (1.5-(20) lead to the following 
relations. From Eq. (15) we have 

r(jc>,, = (Ec)~~ (36) 

where Ci, jeq and (4 jeq are the flux-surface-averaged toroidal current and 
toroidal electric field, respectively. In the case of a tokamak, (EC& is constant and 
is simply related to the voltage applied at the limiter. In equilibrium, Eqs. ( 18) and 
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(20) reduce identically to zero, while Eq. (19) becomes the Grad-Shafranov 
equation 

Finally, Eqs. (16) and (17) reduce to an equation for a 

(38) 

This equation can be solved in general only in the ideal case 
h=O*aeq = constant). Therefore, this system of equations gives an ideal, axisym- 
metric equilibrium solution for the tokamak configuration. In terms of the variables 
we have introduced, this solution can be written as 

where F,,(p) is the toroidal flux function, 

(40) 

and aeq =A,, = /i,, = 0. We assume the equilibrium pressure is a given function 
p,,(p). We can either specify ZQ) or q(p) to determine a complete tokamak 
equilibrium solution. 

At large aspect ratio, using the tokamak ordering, Jr and Ci can be neglected 
compared to the magnetic and fluid perturbations perpendicular to the toroidal 
field. Furthermore, to lowest order in E, Br -constant. Therefore, to the lowest 
order in this limit, ;i and 2 can be neglected and 

Equations (16), (17), and (18) are then trivially verified, and Eqs. (15), (19) and 
(20) are equivalent to the reduced set of resistive MHD equations derived by 
Strauss [7]. 

To solve Eqs. (15t(20), the perturbed quantities are expanded in Fourier series 
using the approach described in Ref. [ll]. Assuming up-down symmetry of the 
equilibrium, the perturbed quantities $, j?, and j can be expanded in cosine 
functions, 

and 6, & and & in sine functions 

(42) 
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Here, IZ is the toroidal wave number and m is the poloidal wave number, and the 
c m,n is taken over n > 0 for all m and over n = 0 for m >, 0. 

For a numerical solution, Eqs. (15)-(20) are written in terms of Ic/, x, 4, A, p, and 
the quantity 

rather than IX. This substitution simplifies some of the terms involved in the matrix 
solution of these equations. From this point on c(* will be referred to as cr. 

III. BOUNDARY CONDITIONS 

In this section the behavior of the solutions near the magnetic axis and at the 
plasma edge is discussed. The conditions at the magnetic axis are determined by 
requiring that the physical quantities be “well behaved” (i.e., that none of the fields, 
nor the fields obtained from them by applying standard vector operators, have 
singularities at the origin). In the generalized toroidal coordinates used here, this 
means that for scalar fields (such as the pressure p and electrostatic potential c() and 
for the toroidal components of vector fields (such as II/ = -A, and 4 = -52,) the 
(m; n) harmonics must approach the coordinate origin as either odd or even power 
series in p. For example, 

xm 

ti,, =P’“’ 1 a2kp2k. 
k=O 

(43) 

For the poloidal components of vector fields, such as x = -A, and A = -.Q,, the 
origin conditions take the form for x of 

x mn = 
plIml-Il f 2k 

a2k P (44) 
k=O 

with the additional constraint that for m # 0 the leading terms of the p and 8 com- 
ponents satisfy the relation 

(aoJp = *z (aoh. 
Here the + sign is used when the 8 component has a cosine series (x) and the 
- sign is used when the 19 component has a sine series (A). 

Equations (43k(45) summarize the behavior of scalar and vector fields at the 
magnetic axis in toroidal coordinates. In this work the scalar fields p and LX and the 
toroidal vector fields tj and C$ are taken to satisfy Eq. (43). However, since only the 
gradients of the potential function CI appear in the dynamical equations, we choose 
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to require a = 0 at the magnetic axis. This means that the leading term in Eq. (43) 
for a(, =O;n) is given by a,, with a, = 0. The motivation for this choice of origin con- 
dition for a is to allow a common treatment of all components in the solution of the 
a equation (a = 0 at p = 0). The poloidal vector fields x and n are taken to satisfy 
Eqs. (44) and (45). It is seen here that the gauge conditions A, = 0 and 52, = 0 
imply, together with Eq. (45), that for m # 0 a, = 0 in Eq. (44). Hence, xrnn -PI”’ + ’ 
and /Imn-plm’+’ as p -0. 

A perfect conducting wall boundary condition is assumed at the plasma edge 
(p = a). This implies the following boundary conditions: 

B~Ip=a=dqp=o=O. (46) 

These are satisfied by requiring 

m*,, = wmn (47) 

and 

mdmn = nA mn (48) 

at p = a. The edge values for $ and x are time advanced by 

and 

(49) 

Equations (49) and (50) are simply Eqs. (15) and (16) written at p = a using the 
conducting wall assumption jC 1 p = (I = j0 1 p = u = 0. We also assume that the perturbed 
pressure is zero at the edge: 

dlpzo=O. (51) 

Finally, since a is the solution of a first-order equation, its value at the plasma edge 
is determined by extrapolation. 

IV. NUMERICAL SCHEME 

The linearization of Eqs. (15k(20) can be written compactly as follows: 

(52) 
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where L and R are second-order spatial differential operators applied to the 
solution vector w= ($, 4, &!, A,$, d). Assuming the spatial representation of 
Eqs. (41) and (42), Eq. (52) can be modeled as a finite difference problem by trun- 
cating the summations to include a finite mode selection and using a finite dif- 
ference representation in the radial coordinate p. We use a three-point centered 
spatial finite difference scheme with variable mesh size to represent the radial 
problem [ll]. In this representation, Eq. (52) takes the form of a finite matrix 
problem. 

In cylindrical geometry, the problem decouples into separate independent 
matrices for each poloidal and toroidal mode number (m; n): L.,,(d8,,/iJt) = 
R,,%,,,,. The matrices L,, and R,, are block tridiagonal. Each row of blocks con- 
sists of three 6 x 6 matrices (for the six unknowns), which represent the difference 
equation at the radius of the designated row, with the three blocks being the con- 
tributions from three adjacent radii (due to the three-point spatial differencing). In 
toroidal geometry the problem decouples into separate toroidal mode numbers n, 
but toroidal effects couple the various poloidal mode numbers m for each n. Now 
we obtain a separate matrix problem for each IZ: L,(aT,,/dt) = R,,X,,, and using 
three-point difference formulas, L, and R, are again block tridiagonal matrices. 
Now, however, if yH is truncated to include M distinct poloidal components, each 
block matrix is 6M x 6M. We solve this system with the routine BTMS [ 121. 

Equation (52) can be solved as an initial value problem. Alternatively, the 
problem can be posed as an eigenvalue problem: 

JLw = Rp. (53) 

Again, the problem decouples into separate toroidal mode numbers n. For each n, 
the solution of Eq. (53) with largest real J. > 0 is the asymptotic solution of Eq. (52). 

To solve the problem numerically, for each toroidal mode number n, we use the 
following iteration scheme: 

where I is the iteration number. Here i and R are the matrices resulting from 
expressing the operators L and R in centered finite difference form in p and taking a 
finite number M of poloidal Fourier components. The parameter A has the dimen- 
sions of time and will be normalized to the poloidal Alfven time rHP. 

Choosing A = At 5 t,,, Eq. (54) is the full implicit time-stepping scheme that 
solves Eqs. (15k(20) and is stated symbolically by Eq. (52). For larger values of A, 
it is an iteration scheme for solving Eq. (53), as will be shown below. Written in this 
way, we have the flexibility of studying both types of problems. This is important 
because this code is being generalized to include nonlinear terms. As the size of A is 
increased, the linear problem can be solved in an efficient manner. 
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Before considering the behavior with A of the iterative scheme of Eq. (54) let us 
discuss the implementation of the boundary conditions described in Section 3. In 
the solution of a system of second-order equations as a matrix problem, the two 
boundary conditions for each quantity are normally imposed ,with one at each end 
of the radial grid. Here we impose at the origin 

x mn = a,, = A,, = 0, 

lClrn” = ~r?m = Pm” = 0 for m # 0, (55) 

a*,, ah, apmn=o -=- =- 
ap ap ap 

for m = 0. 

At the edge we obtain IJ and x from discretizing Eqs. (49) and (50) in a time-cen- 
tered fashion and replacing At by A (A is only identical to the time differential At 
for small A). The resulting equations satisfy Eq. (47) when C$ and n satisfy Eq. (48). 
Because the equation for tl is first order, we choose simply to use a linear 
extrapolation boundary condition on M at the edge. The boundary condition for 4 is 
obtained from Eq. (48), and Eq. (51) gives the pressure at the edge. To summarize 
the edge boundary conditions, 

x 
AI;,, 1+1+- Inn 2 q (m-rzq)A~‘+mcr$’ 

[ 1 
=x 1 JF,, ,,-2 [ q (m-nq)ffh,+m4, , 1 (56) 

LX’+ ’ = linear extrapolation, mn 

mdmn r+l=n~‘+l 
mn 2 

P ‘+I=(). t?f” 

Only the edge boundary condition on /1 remains to be established. For m = 0, 
Eq. (48) implies that & = 0 at the edge. For m f-0, Eqs. (44) and (45) imply 
A ~pl”l+ ’ as p + 0, so that the second boundary condition for n may be 
exyressed 

4Jp=a=o form=0 

and (57) 

a/i,, 
ap 

=o for m # 0. 
p=O 
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For m # 0, Eq. (57) provides a second boundary condition on A at the origin rather 
than an edge boundary condition. 

To solve Eq. (54) with the boundary conditions [Eqs. (55)-(57)], consider two 
solutions %+I and &+I to Eq. (54) for a given 8’, both of which satisfy the boun- 
dary condiions of Eqs. (55) and (56) although not necessarily Eq. (57) for m # 0. 
The boundary conditions for these solutions differ only in those applied for A,, 
(with m # 0) at the edge. Defining f’ = Tp ’ - f? ’ , we see that f’ is a solution of 
the homogeneous equation 

with boundary conditions satisfying those of Eq. (55) at the origin and 

$i, + i [? (m - nq) &, + ntxkn] = 0, 

xk, + i 
[ 

$ (m - nq) AL, + rncrk, 
1 

= 0, 

ah = linear extrapolation, mn 

m4mn - n h - /jh m,, 3 

(58) 

(59) 

for specified AL, (m #O) at the edge. For each m #O, the homogeneous 
equation (58) admits an independent solution xhm with boundary conditions 
satisfying Eqs. (55) and (59) and having edge conditions on A 

AZ:, = rnd,,, . (60) 

For these solutions Eq. (59) takes the form 

(61) 
UkYn = linear extrapolation, 

flkYn = nd,,., 

fjk?” = nd,,,, 
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These homogeneous solutions do not satisfy ~Y/l,,,,,Jap = 0 at p = 0; rather, /l,,n *p 
is observed. This behavior arises as a result of the form of the radial difference 
operations applied to ,4 occurring in the definition of Ue [Eq. (33)], where 
ajap [i/p alap (pn) 1 = 0 for n N p. 

Given that there are M (or M- 1 if m = 0 is present) poloidal components of n 
which must satisfy A,, = 0 and an,,/ap = 0 at p = 0 and that there are an equal 
number of independent homogeneous solutions to Eq. (58) having an,,/ap # 0 at 
p = 0, it is possible to add a linear combination of the homogeneous solutions to 
any solution of Eq. (54) to obtain another solution of Eq. (54) with the desired 
boundary conditions on /i,, at the origin. With this in mind, we are free to solve 
Eq. (54) subject to a conveniently imposed edge boundary condition for n and then 
to add the superposition of homogeneous solutions to guarantee the boundary con- 
dition (57). For this convenient boundary condition we choose A,,,, = 0 at the edge. 
With this choice the edge boundary conditions of Eq. (56) become 

(m-w)Ai,+mL , 1 
cz’+ l = linear extrapolation, 

,:;I = A,, r+‘=P’+‘=o. mn 

(62) 

The overall solution strategy is described then in the following: 

(1) At the outset of the calculation, obtain the homogeneous solutions Xh” to 
Eq. (58) with the boundary conditions of Eqs. (55) and (59), with one solution for 
each m # 0. This step is executed only once. 

(2) Given X’, solve the inhomogeneous Eq. (54) for xi(‘+‘) with the boundary 
conditions of Eqs. (55) and (62). 

(3) To the solution X i(r+l) of the inhomogeneous equation, add a linear com- 
bination C, + 0 c, Xh” of the homogeneous equation solutions with the coefficients 
c, determined, such that 

~r+l=7(‘+‘)+ c C,Xhm 
rn#O 

satisfies the boundary condition [Eq. (57)] for A. 
(4) If X”i is not a converged eigenfunction, increment 1, return to step (2) 

and iterate. 

Having described the details of the iterative scheme, we consider the behavior as 
the convergence parameter A is varied. We assume that the problem 

ncr-= Rx (63) 



120 CHARLTON ET AL. 

has a complete set of eigenfunctions X, with real eigenvalues Ij and, further, that 
the eigenfunctions are nondegenerate, so that lj # Ljs for j #j’. Then, any solution 
vectors f’ and g’+’ can be written as linear combinations %‘=c, cjXj and 
%‘+ ’ = 1, cj+ l X, of X,. Substituting into Eq. (54) applying iP ‘, and invoking the 
independence of X,, we obtain 

(64) 

Hence, the iterative scheme will pick out and converge to the eigenfunction X, for 
which I( 1 + A/2 Ij)/( 1 -A/2 I,)[ is a maximum. Furthermore, the rate of con- 
vergence is very rapid when I(1 + A/2 ii)/( 1 - A/2 I*,)( is large (i.e., when d z 2/A,). 
This is illustrated in Fig. 1 where the number of iterations to converge a 
(IYI = 1; II = 1) tokamak eigenfunction in cylindrical geometry is plotted as a 
function of A. The eigenvalue for this case is J = 0.14r,P’, which is consistent with 
A z 14s, for the fastest convergence. The eigenvalues are calculated as follows: the 
quantities if are defined by 

i, = (OX’), 
’ (LX’),’ (65) 

where i is the index for the vector component and ( ) indicates an average over p. 
When the numerical scheme converges to an eigenfunction, Lf becomes independent 
of I and i and defines the eigenvalue 1,. 

An interesting consequence of Eq (64) is the ability to calculate a spectrum of 
eigenfunctions simply by varying the convergence parameter A. We assume that ii 
and A7 are adjacent eigenvalues (i.e., that no eigenfunctions have intermediate eigen- 
values). When Az2/,ij, the solution converges rapidly to Xi, and when A *2/i,, the 

CYLINDRICAL 
n=l,m=l 

i 

0 5 10 15 20 25 

A VHpl 

FIG. 1. Number of steps (N) to converge as a function of iteration step size d. Less than ten steps 
are required over a wide range of d. 
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solution converges rapidly to X,. Assuming 1, > i,, there is an intermediate trans- 
ition value of A such that 

Choosing the - sign on the left (A/2 ii > 1) and the + sign on the right 
(A/2 li < 1) and solving, we obtain 

A:;=2/& (66) 

for this transition value. This is illustrated in Fig. 2 where the (WI = 1; n = 1) eigen- 
functions for the cylindrical tokamak configuration used in Fig. 1 are calculated as 
A is varied. The eigenvalues show discrete transitions at the appropriate values of A 
as marked by the arrows. The poloidal components of the velocity for each of the 
eigenfunctions are shown in the insets. The p component of the velocity has no 
nodes for the largest 2, one node for the second largest and two for the third 
largest. This is typical behavior for the most unstable, second-most unstable and 

0.25 

0.20 

0.15 

CYLINDRICAL 
n=t m=t 

tA=2/- 

f A ’ 2/Xi 

0 20 40 60 60 100 120 140 (60 

A (rHp) 

FIG. 2. Eigenvalue I as a function of A. The iteration of Eq. (54) selects an eigenvalue and 
corresponding unstable eigenfunction, depending on A. 
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third-most unstable modes. This is, in fact, what is being selected by the choice of d. 
Also shown for reference are the resonant values of d for each mode. 

Before leaving the subject of the calculation of eigenfunctions and eigenvalues, it 
is worthwile to compare the eigenvalues of the iterative scheme with the growth 
rates normally measured using initial value codes. Equation (64) shows that for 
A/2 Ai> 1, the iteration procedure flips the sign of the growing solution. 
Asymptotically a growing solution will exhibit the growth rate y,, defined by 

,/I”’ 
0.4 

l X, EIGENVALUE 

o Y, GROWTH RATE 

0 
0 5 10 !5 20 25 30 35 

A (T,.,,,) 

FIG. 3. The eigenvalue (1) and eigenfunctions do not vary with d between transitions. The growth 
rate (7) agrees with I for small A. The most unstable mode is illustrated. 
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so that 

(68) 

Such growth rates are normally used in initial value codes to measure the growth of 
the perturbations as well as the linear eigenvalues when nonlinear effects are unim- 
portant. Equation (67) shows that for ALj~ 1, yj~lj~( l/A) ln(cj+ l/c:), giving good 
agreement between the growth rate and the eigenvalue in the limit of small A. In the 
limit A + 0 (i.e., A,Ij% 1 for all A,), Eq. (64) shows that the selected eigenfunction is 
that with the largest eigenvalue, and Eq. (67) shows that the initial value 
calculation of the growth rate gives that eigenvalue. For the incompressible model 
used here, we expect all eigenvalues to satisfy 1j5r;:, so that for A <z, the 
parameter A is equivalent to a time step-size. This will be true whenever A,I<‘l for 
the fastest growing eigenfunction. To illustrate the behavior of the growth rate y as 
A is varied, Fig. 3 shows 1 and y plotted versus A for the same cases as Fig. 1. Note 
that A falls in the range that gives the largest eigenvalue shown in Fig. 2. The 
resonant behavior of y at A =2/J*, the approach of y to 2 as A -+ 0, and the con- 
stancy of 1 as A is increased are all clearly shown. The plotted values of y were 
obtained by calculating the actual growth of the eigenfunction in the calculations. 
These values are seen to obey Eqs. (67) and (68) very well using the corresponding 
2 and i, thus supporting the validity of this analysis. Finally, the insets show the 
poloidal components of the velocity for three different values of A, with the good 
agreement indicating the independence of the result from the particular choice of A 
within the range of convergence to the particular eigenfunction obtained. 

V. APPLICATION TO THE n= 1 MODE IN TOKAMAKS 

We now apply the fully implicit iterative scheme to the calculation of the 
IZ = 1 mode for the tokamak configuration. Two sequences are considered. In the 
first, for toroidal geometry we consider a configuration with aspect ratio A, = 4 
and several equilibria of various beta, all having safety factor profiles with the range 
0.9 = q,, 6 q(p) < q, = 2.3 from the magnetic axis to the edge. The pressure profile is 
taken to vary as p cc $‘. The dominant poloidal component for these cases is m = 1. 
The second sequence consists of cylindrical geometry calculations for an 
equilibrium having a constant equilibrium toroidal magnetic field B& = 1 and a 
safety factor profile 0.9 = q. < q(p) < q. = 3.3. Here, the m = 0 - 3 components are 
considered separately. For the toroidal calculations, comparisons are carried out 
with the results of the ideal MHD stability code ERATO [9], which is based on an 
energy principle, and with the results of the initial value resistive MHD code RST 
[6], which uses reduced equations. In cylindrical geometry, comparison is made 
with the results of the initial value resistive MHD code CYL [S], which uses the 
full equations. 
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FIG. 6. Comparison of ideal results with the code ERATO [9]. 
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Accurate results must be converged both in the number of grid points used in p 
and in the number of Fourier modes retained in the expansions of both the 
dynamic and equilibrium quantities. In Fig. 4, the n = 1 eigenvalue is shown as a 
function of the number of radial grid points for two cases in the toroidal sequence. 
For large A( -O.lt;j), results are converged with -100 grid points. For smaller 
A( -O.Olr;~), however, a convergence study is required with the results 
extrapolated to an infinite number of points. Figure 5 shows the convergence 
behavior when varying the number of modes used to describe the equilibrium. The 
required number of modes (for errors of d 1% in 1,) increases from a few at small 
beta, where the distortion of flux surfaces is small, up to 5 to 10 modes for larger 
beta, where flux surfaces are significantly distorted. For the n = 1 results presented 
in this paper, dynamic modes from m = - 1 to m = 4 are used and have been deter- 
mined to give errors of 5 1%. For the safety factor considered here (0.9 < q < 2.3), 
this distribution of modes covers the resonant region with two additional modes 
above and below. 

In Fig. 6, a comparison of the ideal toroidal results with those of the ideal 
MHD stability code ERATO [9] is shown. The agreement is excellent. The 
n = 1 mode structure in both sets of results is that of an m = 1 dominated internal 
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FIG. 7. Comparison of results using the full equations (FAR code) with the results obtained with the 
reduced equations (RST code). Stability results for n = 1 and fiO = 0.35%. The mode structure is shown 
only for the energetically dominant m/n = l/l component. 
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kink. This is expected due to the presence of the q = 1 .O surface in the equilibria 
used. In the FAR code, for purposes of this comparison, the resistivity was set to 
zero. 

Resistive calculations were also carried out for the toroidal sequence and com- 
parisons made with the results of the reduced equations using the code RST. In 
Figs. 7, 8, and 9 the calculated eigenvalues for equilibria having different beta are 
shown, using both the reduced and full equations. The eigenvalues are shown as 
functions of SP ‘I3 (S is the ratio of resistive to poloidal Alfven times). Also shown is 
the structure of the velocity vector in the poloidal plane as obtained with the full 
equations. The equilibrium used for the results shown in Fig. 7 had the lowest beta 
value (fl= 0.09%). The eigenvalues found using the two sets of equations are vir- 
tually identical. The poloidal velocity structure is that of a resistive tearing mode. 
The resistive nature of the mode implies that in the ideal limit (S --+ co) the mode 
should be stable, as seen in Fig. 7. 

In Fig. 8, comparative stability results are shown for an equilibrium with higher 
beta (fl= 2.4%). The eigenvalues from the two sets of equations differ significantly, 
with the reduced equations giving a purely resistive mode and the full equations an 
ideally unstable mode. The poloidal velocity structure (at the top of the figure) is 
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FIG. 8. Stability results for n = 1 and fi,, = 8.7%. At this /IO, the internal kink mode is unstable. The 
FAR result obtains this intability, but it is ordered out of the reduced equations. The mode structure is 
shown only for the energetically dominant m/n = l/l component. 
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that of an internal kink. As is well known, the ordering scheme used to derive the 
reduced equations excludes the internal kink driving terms in lowest order. Thus, 
the difference in Fig. 8 is anticipated. The structure of the mode produced by the 
reduced equations is that of a resistive ballooning mode [6]. 

In Fig. 9, results using a high-beta equilibrium are presented. Again, the 
agreement between the full and reduced equations is excellent. The mode structure 
is that of a resistive ballooning mode that is adequately treated with the reduced 
equations. This equilibrium lies in the second stability region of the ideal internal 
kink, which is detailed in other work [ 13, 141. Thus, the reduced and full equations 
give results for n = 1 that agree very well at high and low beta. They differ, 
however, at intermediate beta, where such differences are expected due to the 
presence of the internal kink mode. 

Finally, the cylindrical geometry eigenvalues for m = 0 - 3 obtained from FAR 
are compared in Fig. 10 to those from the full-equations, initial-value MHD code 
CYL [S]. Again, the agreement is excellent. 

In summary, the fully implicit scheme described here provides linear eigen- 
functions and eigenvalues in good agreement with those obtained by other methods 
when agreement is anticipated. Comparisons have been carried out for a con- 
siderable range of cases with (1) an ideal stability model using an energy-principle 
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FIG. 10. Comparison of FAR, rnn in the cylindrical limit, with the cylindrical code CYL [8]. 

approach, (2) a reduced-equations model using a semi-implicit numerical scheme, 
and (3) a full-equations model using a semi-implicit scheme and advancing v and B 
rather than potential functions. In all cases the fully implicit scheme of the FAR 
code produced results in significantly less computer time than used by the codes 
with which it was compared. The efficiency of this scheme is due to the small num- 
ber of iterations required for the rapid convergence to an eigenfunction (see Fig. 1). 

VI. DISCUSSION AND CONCLUSIONS 

The full set of resistive MHD equations, together with an incompressibility 
assumption, gives a tractable set of equations to be solved numerically. The linear 
implementation of these equations using a fully implicit scheme utilizes a super- 
position of the homogeneous and inhomogeneous solutions of the system of 
equations in order to impose the edge boundary conditions and have regular 
behavior at the origin. The numerical scheme allows extremely rapid convergence 
through selection of values for the convergence parameter A, which may be iden- 
tified with the time step when A is small. Therefore, converged eigenvalues and 
eigenfunctions may be found in very few steps if an approximate value for the eigen- 
value is known. This would be the case in a parameter scan, once 2 for a 
“neighboring” case has been determined. Another advantage of this numerical 
scheme is that it allows the study of modes other than the most unstable one. This 
scheme is being extended to solve the nonlinear set of MHD equations. 
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